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LINKWITZ-RILEY CROSSOVERS: A PRIMER

Introduction
In 1976, Siegfried Linkwitz published his famous paper 
[1] on active crossovers for non-coincident drivers. In 
it, he credited Russ Riley (a co-worker and friend) with 
contributing the idea that cascaded Butterworth filters 
met all Linkwitz’s crossover requirements. Their efforts 
became known as the Linkwitz-Riley (LR) crossover 
alignment. In 1983, the first commercially available 
Linkwitz-Riley active crossovers appeared from Sund-
holm and Rane.

Today, the de facto standard for professional audio 
active crossovers is the 4th-order Linkwitz-Riley (LR-4) 
design. Offering in-phase outputs and steep 24 dB/oc-
tave slopes, the LR-4 alignment gives users the neces-
sary tool to scale the next step toward the elusive goal 
of perfect sound. And many DSP crossovers offer an 
8th-order Linkwitz-Riley (LR-8) option.

Before exploring the math and electronics of LR 
designs, it is instructional to review just what Link-
witz-Riley alignments are, and how they differ from 
traditional Butterworth designs.
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Linkwitz-Riley Crossovers: Background
Siegfried Linkwitz and Russ Riley, then two Hewlett-
Packard R&D engineers, wrote the aforementioned pa-
per describing a better mousetrap in crossover design. 
Largely ignored (or unread) for several years, it eventu-
ally received the attention it deserved. Typical of truly 
useful technical papers, it is very straightforward and 
unassuming: a product of careful analytical attention 
to details, with a wonderfully simple solution.

It is seldom whether to cross over, but rather, how to 
cross over. Over the years active crossovers proliferated 
at a rate equal to the proverbial lucky charm. 

In 1983, a 4th-order state variable active filter [2] 
was developed by Rane Corporation to implement the 
Linkwitz-Riley alignment for crossover coefficients and 
now forms the heart of many analog active crossover 
designs.

A Perfect Crossover
Mother Nature gets the blame. Another universe, 
another system of physics, and the quest for a perfect 
crossover might not be so difficult. But we exist here 
and must make the best of what we have. And what we 
have is the physics of sound, and of electromagnetic 
transformation systems that obey these physics.

A perfect crossover, in essence, is no crossover at 
all. It would be one driver that could reproduce all 
frequencies equally well. Since we cannot have that, 
second best would be multiple speakers, along the same 
axis, with sound being emitted from the same point, 
i.e., a coaxial speaker that has no time shift between 
drivers. This gets closer to being possible, but still is 
elusive. Third best, and this is where we really begin, 
are multiple drivers mounted one above the other with 
no time shift, i.e., non-coincident drivers adjusted 
front-to-rear to compensate for their different points of 
sound propagation. Each driver would be fed only the 
frequencies it is capable of reproducing. The frequency 
dividing network would be, in reality, a frequency gate. 
It would have no phase shift or time delay. Its ampli-
tude response would be absolutely flat and its roll-off 
characteristics would be the proverbial brick wall. 
(Brings a tear to your eye, doesn’t it?)

DSP digital technology makes such a crossover pos-
sible, but not at analog prices demanded by most work-
ing musicians.

Linkwitz-Riley Crossover
What distinguishes the Linkwitz-Riley crossover de-
sign from others is its perfect combined radiation pat-
tern of the two drivers at the crossover point. Stanley 
P. Lipshitz [3] coined the term “lobing error” to de-
scribe this crossover characteristic. It derives from the 
examination of the acoustic output plots (at crossover) 
of the combined radiation pattern of the two drivers 
(see Figures 1 & 2). If it is not perfect the pattern forms 
a lobe that exhibits an off-axis frequency dependent tilt 
with amplitude peaking.

Interpretation of Figure 1 is not particularly obvi-
ous. Let’s back up a minute and add some more details. 
For simplicity, only a two way system is being modeled. 
The two drivers are mounted along the vertical center 
of the enclosure (there is no side-to-side displacement, 
i.e., one driver is mounted on top of the other.) All 
front-to-back time delay between drivers is corrected. 
The figure shown is a polar plot of the sideview, i.e., the 
angles are vertical angles.

It is only the vertical displacement sound field that is 
at issue here. All of the popular crossover types (con-
stant voltage [4], Butterworth all-pass [5], etc.) are well 
behaved along the horizontal on-axis plane. To illus-
trate the geometry involved here, imagine attaching 
a string to the speaker at the mid-point between the 
drivers. Position the speaker such that the mid-point is 
exactly at ear level. Now pull the string taut and hold 
it up to your nose (go on, no one’s looking). The string 
should be parallel to the floor. Holding the string tight, 
move to the left and right: this is the horizontal on-
axis plane. Along this listening plane, all of the clas-
sic crossover designs exhibit no problems. It is when 
you lower or raise your head below or above this plane 
that the problems arise. This is the crux of Siegfried 
Linkwitz’s contribution to crossover design. After all 
these years and as hard as it is to believe, he was the 
first person to publish an analysis of what happens off-
axis with non-coincident drivers (not-coaxial). (Others 
may have done it before, but it was never made public 
record.)

Figure 1a represents a side view of the combined 
acoustic radiation pattern of the two drivers emitting 
the same single frequency. That is, a plot of what is 
going on at the single crossover frequency all along the 
vertical plane. The pattern shown is for the popular 18 
dB/octave Butterworth all-pass design with a crossover 
frequency of 1700 Hz and drivers mounted 7 inches 
apart1.
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Figure 2. Linkwitz-Riley radiation response at crossover.

What is seen is a series of peaking and cancellation 
nodes. Back to the string: holding it taut again and 
parallel to the floor puts you on-axis. Figure 1a tells us 
that the magnitude of the emitted 1700 Hz tone will 
be 0 dB (a nominal reference point). As you lower your 
head, the tone increases in loudness until a 3 dB peak is 
reached at 15 degrees below parallel. Raising your head 
above the on-axis line causes a reduction in magnitude 
until 15 degrees is reached where there is a complete 
cancellation of the tone. There is another cancellation 
axis located 49 degrees below the on-axis. Figure 1b 
depicts the frequency response of the three axes for 
reference.

For a constant voltage design, the response looks 
worse, having a 6 dB peaking axis located at -20 de-
grees and the cancellation axes at +10 and -56 degrees, 
respectively. The peaking axis tilts toward the lagging 
driver in both cases, due to phase shift between the 
two crossover outputs.

The cancellation nodes are not due to the crossover 
design, they are due to the vertically displaced driv-
ers. (The crossover design controls where cancellation 
nodes occur, not that they occur.) The fact that the 
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Two of the cancellation nodes are still present, but 
are well defined and always symmetrical about the 
on-axis plane. Their location changes with crossover 
frequency and driver mounting geometry (distance 
between drivers). With the other designs, the peaking 
and cancellation axes change with frequency and driver 
spacing.

Let’s drop the string and move out into the audience 
to see how these cancellation and peaking nodes affect 
things. Figure 3 shows a terribly simplified, but not too 
inaccurate stage-audience relationship with the charac-
teristics of Figure 1 added.

The band is cooking and then comes to a musical 
break. All eyes are on the flautist, who immediately goes 
into her world-famous 1700 Hz solo. So what happens? 
The people in the middle hear it sweet, while those up 
front are blown out of their seats, and those in the back 
are wondering what the hell all the fuss is!

Figure 4 shows the identical situation but with the 
Linkwitz-Riley characteristics of Figure 2 added. Now 
the people in the middle still hear everything sweet, 
but those up front are not blown away, and those in the 
back understand the fuss!

I think you get the point.
Now let’s get real. I mean really real. The system isn’t 

two way, it is four way. There isn’t one enclosure, there 
are sixteen. No way are the drivers 7 inches apart — try 
27 inches. And time corrected? Fuhgeddaboudit.

Can you even begin to imagine what the vertical 
off-axis response will look like with classic crossover 
designs? The further apart the drivers are, the greater 
the number of peaks and cancellations, resulting in a 
multi-lobe radiation pattern. Each crossover frequency 
has its own set of patterns, complicated by each enclo-
sure contributing even more patterns. And so on.

(For large driver spacing the Linkwitz-Riley design 
has as many lobes as other designs, except that the 
peaks are always 0 dB, and the main lobe is always 
on-axis.)

Note that all this is dealing with the direct sound 
field, no multiple secondary arrivals or room interfer-
ence or reverberation times are being considered. Is it 
any wonder that when you move your real-time ana-
lyzer microphone three feet you get a totally different 
response?

Now let me state clearly that using a Linkwitz-Riley 
crossover will not solve all these problems. But it will 
go a long way toward that goal.

On Axis 

Cancellation Axis 

Peaking Axis 

Cancellation Axis 

Figure 3. Butterworth all-pass crossover stage-audience relationship.

On Axis 
Cancellation Axis 

Cancellation Axis 

Figure 4. Linkwitz-Riley crossover stage-audience relationship.

drivers are not coaxial means that any vertical devia-
tion from the on-axis line results in a slight, but very 
significant difference in path lengths to the listener. 
This difference in distance traveled is effectively a 
phase shift between the drivers. And this causes can-
cellation nodes — the greater the distance between 
drivers, the more nodes.

In distinct contrast to these examples is Figure 
2, where the combined response of a Linkwitz-Riley 
crossover design is shown. There is no tilt and no peak-
ing — just a perfect response whose only limitation is 
the dispersion characteristics of the drivers. The main 
contributor to this ideal response is the in-phase rela-
tionship between the crossover outputs.
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The other outstanding characteristic of the Link-
witz-Riley alignment is the rolloff rate of 24 dB/octave 
(Figure 5). With such a sharp drop-off, drivers can 
operate closer to their theoretical crossover points 
without the induced distortion normally caused by 
frequencies lying outside their capabilities. Frequen-
cies just one octave away from the crossover point are 
already attenuated by 24 dB (a factor or about 1/16). 
The importance of sharp cutoff rate and in-phase fre-
quency response of the crossover circuitry cannot be 
over-stressed in contributing to smooth overall system 
response.

Linkwitz-Riley crossover characteristics summary:
1. Absolutely flat amplitude response throughout the 

passband with a steep 24 dB/octave rolloff rate after 
the crossover point.

2. The acoustic sum of the two driver responses is unity 
at crossover. (Amplitude response of each is -6 dB 
at crossover, i.e., there is no peaking in the summed 
acoustic output.)

3. Zero phase difference between drivers at crossover. 
(Lobing error equals zero, i.e., no tilt to the polar ra-
diation pattern.) In addition, the phase difference of 
zero degrees through crossover places the lobe of the 
summed acoustic output on axis at all frequencies.

4. The low pass and high pass outputs are everywhere 
in phase. (This guarantees symmetry of the polar 
response about the crossover point.)

5. All drivers are always wired the same (in phase).

A casual reading of the above list may suggest that 
this is, indeed, the perfect crossover. But such is not so. 
The wrinkle involves what is known as “linear phase.” 
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Figure 5. Frequency response of 4th-order Linkwitz-Riley crossover.

A Linkwitz-Riley crossover alignment is not linear 
phase: meaning that the amount of phase shift is a 
function of frequency. Or, put into time domain terms, 
the amount of time delay through the filter is not 
constant for all frequencies, which means that some 
frequencies are delayed more than others. (In technical 
terms, the network has a frequency-dependent group 
delay, but with a gradually changing characteristic.)

Is this a problem? Specifically, is this an audible 
“problem?” In a word, no.

Much research has been done on this question [6-
9] with approximately the same conclusions: given a 
slowly changing non-linear phase system, the audible 
results are so minimal as to be nonexistent; especially 
in the face of all of the other system nonlinearities. 
And with real-world music sources (remember music?), 
it is not audible at all.

State-Variable Solution
One of the many attractions of the Linkwitz-Riley de-
sign is its utter simplicity, requiring only two standard 
2nd-order Butterworth filters in series. The complexi-
ties occur when adjustable crossover frequencies are 
required.

After examining and rejecting all of the standard 
approaches to accomplish this task, Rane developed 
a 4th-order state-variable filter specifically for imple-
menting the Linkwitz-Riley crossover. The state-vari-
able topology was chosen over other designs for the 
following reasons:
1. It provides simultaneous high-pass and low-pass out-

puts that are always at exactly the same frequency.
2. Changing frequencies can be done simultaneously 

on the high-pass and low-pass outputs without any 
changes in amplitude or Q (quality factor).

3. The sensitivities of the filter are very low. (Sensitivity 
is a measure of the effects of non-ideal components 
on an otherwise, ideal response.)

4. It offers the most cost-effective way to implement 
two 4th-order responses with continuously variable 
crossover frequencies.
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Time or Phase Correction
Implicit in the development of the theory of a Link-
witz-Riley crossover design is the key assumption that 
the sound from each driver radiates from the some 
exact vertical plane, i.e., that the drivers have no time 
delay with respect to each other. The crossover then 
prohibits any lobing errors as the sound advances 
forward simultaneously from the two drivers. Figure 
6 illustrates such a front-to-back displacement, which 
causes the lobing error shown in Figure 7a.

A Linkwitz-Riley crossover applied to drivers that 
are not time-corrected loses most of its magic. The 
lobing error is no longer zero; it exhibits a frequency 
dependent tilt with magnitude errors as shown in Fig-
ure 7a.

Crossover Primer

1st-Order Network
Analog crossovers begin with a resistor and a capacitor. 
It never gets more complicated than that—just resistors 
and capacitors: lots and lots of resistors and capacitors. 
Resistors are the great emancipators of electronics; 
they are free of frequency dependence. They dissipate 
energy without frequency prejudice. All frequencies 
treated equally. Capacitors, on the other hand, selec-
tively absorb energy; they store it, to be released at a 
later time. While resistors react instantly to any voltage 
changes within a circuit, capacitors take time to charge 
and discharge.

Capacitors are so frequency dependent they only 
pass signals with frequency associated with them. Di-
rect-current (think of it as zero frequency) will not pass 
at all, while at the other end of the spectrum very high 
frequencies will not absorb. Capacitors act like a piece 
of wire to high frequencies; hardly there at all.

R

C

R

C

INPUT

HF OUTPUT

LF OUTPUT

Figure 8. 1st-order crossover networkFigure 7. Adding delay to the forward driver time-aligns the 

phase of both drivers, reducing lobing error.

Figure 7a. Without time alignment

Figure 7b. With time alignment

Figure 6. Driver Displacement
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We use these facts to create a crossover network. 
Figure 8 shows such a circuit. By interchanging the po-
sitions of the resistor and capacitor, low-pass (low fre-
quencies = LF) and high-pass (high frequencies = HF) 
filters result. For the low-pass case (LF), the capacitor 
ignores low frequencies and shunts all high frequencies 
to ground. For the high-pass case (HF), the opposite 
occurs. All low frequencies are blocked and only high 
frequencies are passed.

1st-Order Amplitude Response
Using 1 kHz as an example and plotting the amplitude 
versus frequency response (Figure 9) reveals the ex-
pected low-pass and high-pass shapes. Figure 9 shows 
that the 1st-order circuit exhibits 6 dB/octave slopes. 
Also, that 6 dB/octave equals 20 dB/decade. Both 
ways of expressing steepness are useful and should be 
memorized. The rule is: each order, or degree, of a 
filter increases the slopes by 6 dB/octave or 20 dB/
decade. So, for example, a 4th-order (or 4th-degree—
interchangeable terms) circuit has 24 dB/octave (4 x 6 
dB/octave) or 80 dB/decade (4 x 20 dB/decade) slopes.

Using equal valued resistors and capacitors in each 
of the circuits causes the amplitude responses to ‘cross 
over’ at one particular frequency where their respec-
tive -3 dB points intersect. This point represents the 
attenuation effect resulting when the impedance of the 
capacitor equals the resistance of the resistor.

The equivalent multiplying factor for -3 dB is .707, 
i.e., a signal attenuated by 3 dB will be .707 times the 
original in level. Ohms law tells us that if the voltage is 
multiplied by .707, then the current will also be multi-
plied by .707. Power is calculated by multiplying voltage 
times current. Therefore, a voltage multiplied by .707, 
and a current multiplied by .707, equals 0.5 power. So 

the -3 dB points represent the half-power point — a 
useful reference.

Lastly, Figure 9 shows the flat amplitude response 
resulting from summing the LF and HF outputs to-
gether. This is called constant voltage, since the result 
of adding the two output voltages together equals 
a constant. The 1st-order case is ideal in that con-
stant power also results. Constant-power refers to the 
summed power response for each loudspeaker driver 
operating at the crossover frequency. This, too, results 
in a constant. Since each driver operates at half-power 
at the crossover frequency, their sum equals one—or 
unity, a constant.

1st-Order Phase Response
Much is learned by examining the phase shift behavior 
(Figure 10) of the 1st-order circuit. The upper curve is 
the HF output and the lower curve is the LF output. 
The HF curve starts at +90° phase shift at DC, reduces 
to +45° at the crossover frequency and then levels out 
at 0° for high frequencies. The LF curve starts with 0o 
phase shift at DC, has -45° at the crossover frequency 
and levels out at -90° for high frequencies.

Because of its reactive (energy storing) nature each 
capacitor in a circuit contributes 90° of phase shift, 
either positive or negative depending upon its applica-
tion. Since the HF section places the capacitor directly 
in the signal path, this circuit starts out with +90° 
phase shift. This is called phase lead. The LF section, 
which starts out with 0° and eventually becomes -90° is 
called phase lag.

Examination of Figure 10 allows us to formulate a 
new rule: each order, or degree, of a crossover net-
work contributes ±45° of phase shift at the crossover 
frequency (positive for the HF output and negative for 
the LF output).

Figure 9. 1st-order amplitude response. Figure 10. 1st-order phase response.
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Once again, Figure 10 shows the idealized nature 
of the 1st-order case. Here the result of summing the 
outputs together produces 0° phase shift, which is to 
say that the summed amplitude and phase shift of a 
1st-order crossover is equivalent to a piece of wire.

1st-Order Group Delay Response
We shall return to our rules shortly, but first the 
concept of group delay needs to be introduced. Group 
delay is the term given to the ratio of an incremental 
change in phase shift divided by the associated incre-
mental change in frequency (from calculus, this is the 
first-derivative). The units for group delay are seconds. 
If the phase shift is linear, i.e., a constant rate of change 
per frequency step, then the incremental ratio (first-de-
rivative) will be constant. We therefore refer to a circuit 
with linear phase shift as having constant group delay.

Group delay is a useful figure of merit for identifying 
linear phase circuits. Figure 11 shows the group delay 
response for the Figure 8 low-frequency output. Con-
stant group delay extends out to the crossover region 
where it gradually rolls off (both outputs are identical 
and sum flat). The summed response is, again, that of a 
piece of wire. 

The importance of constant group delay is the ability 
to predict the behavior of the LF output step response. 
A circuit with constant group delay (linear phase shift) 

shows no overshoot or associated damping time to a 
sudden change (step) in input level (Figure 12). The 
circuit reacts smoothly to the sudden change by rising 
steadily to meet the new level. It does not go beyond 
the new level and require time to settle back. We also 
refer to the step response as the transient response of 
the circuit. The transient response of the summed out-
puts is perfect since their sum is perfectly equal to one.

For clarity purposes normally only the step response 
of the LF network is shown. Nothing is learned by 
examining the step response of the HF network. A step 
response represents a transition from one DC level to 
another DC level, in this case, from -1 volt to +1 volt. 
A HF network, by definition, does not pass DC (neither 
does a loudspeaker), so nothing particularly relevant 
is learned by examining its step response. To illustrate 
this, Figure 12 shows the HF step response. It begins 
and ends with zero output since it cannot pass DC. The 
sharp edge of the input step, however, contains much 
high frequency material, which the HF network passes. 
So, it begins at zero, passes the high frequencies as a 
pulse, and returns to zero.

The HF and LF outputs are the exact complement of 
each other. Their sum equals the input step exactly as 
seen in Figure 12. Still, we learn everything we need to 
know by examining only the LF step response; looking 
for overshoot and ringing. From now on, just the LF 
output is shown.

Figure 11. 1st-order low-frequency group delay response. Figure 12. 1st-order transient response.
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Vector Diagrams
A vector is a graphical thing (now we’re getting techni-
cal) with magnitude and direction. We can use vectors 
to produce diagrams representing the instantaneous 
phase shift and amplitude behavior of electrical cir-
cuits. In essence, we freeze the circuit for a moment of 
time to examine complex relationships.

We shall now apply our two rules to produce a 
vector diagram showing the relative phase shift and 
amplitude performance for the 1st-order crossover 
network at the single crossover frequency (Figure 13a). 
By convention, 0° points right, +90° points up, -90° 
points down, and ±180° points left. From Figures 9 & 
10 we know the HF output amplitude is -3 dB with +45° 
of phase shift at 1 kHz, and the LF output is -3 dB with 
-45° phase shift. Figure 13a represents the vectors as 
being .707 long (relative to a normalized unity vector) 
and rotated up and down 45°. This shows us the relative 
phase difference between the two outputs equals 90°.

Next we do vector addition to show the summed 
results. Vector addition involves nothing more com-
plex than mentally moving one of the vectors to the 
end of the other and connecting the center to this new 
end point (constructing a parallelogram). Doing this, 
results in a new vector with a length equal to 1 and an 
angle of 0°. This tells us the recombined outputs of the 
HF and LF networks produce constant voltage (i.e., a 
vector equal to 1), and is in phase with the original in-
put of the circuit (i.e., a vector with 0° phase rotation).

The 1st-order case is ideal when summed. It yields a 
piece of wire. Since the responses are the exact mir-
ror images of each other, they cancel when summed, 
thus behaving as if neither was there in the first place. 
Unfortunately, all optimized higher order versions yield 
flat voltage/power response, group delay or phase shift, 
but not all at once. Hence, the existence of different 
alignments and resultant compromises.

Comparing Butterworth & 
Linkwitz-Riley Alignments

Butterworth Alignment
There are many types of crossover alignments or filters 
(most named after mathematicians). Each displays a 
unique amplitude characteristic throughout the pass-
band. Of these, only Butterworth filters have an abso-
lutely flat amplitude response. For this reason, Butter-
worth filters are popular for crossover use. Butterworth 
filters obey our two rules, so we can diagram them for 
the 2nd, 3rd and 4th-order cases (Figures 13b-13d). 
The 2nd-order case has ±90° phase shift as shown. This 
results in the outputs being 180° out of phase. Vector 
addition for this case produces a zero length vector, or 
complete cancellation. The popular way around this is 
to reverse the wiring on one of the drivers (or, if avail-
able, electronically inverting the phase at the cross-
over). This produces a resultant vector 90° out of phase 
with the input and 3 dB (1.414 equals +3 dB) longer. 
This means there will be a 3 dB amplitude bump at the 
crossover region for the combined signals.

The 3rd-order Butterworth case (Figure 13c) mim-
ics the 1st-order case at the crossover frequency, except 
rotated 180°. Hence, we see the HF vector rotated up 
135° (3 x 45°) and the LF vector rotated down the same 
amount. The phase shift between outputs is still 90°. 
The resultant is constant voltage (unity) but 180° out-
of-phase with the input.

The 4th-order Butterworth diagram (Figure 13d) 
shows the HF vector rotated up 180° and the LF vector 
rotated down the same amount. The phase difference 
between outputs is now zero, but the resultant is +3 dB 
and 180° out-of-phase with the input. So, the 4th-order 
and the inverted phase 2nd-order produce 3 dB bumps 
at the crossover frequency.

a) 1st-order
(6 dB/oct)

b) 2nd-order
(12 dB/oct)

c) 3rd-order
(18 dB/oct)

d) 4th-order
(24 dB/oct)

Figure 13. 1st-order vector and 2nd-, 3rd- and 4th-order Butterworth vector diagrams.
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Linkwitz-Riley Alignment
Two things characterize a Linkwitz-Riley alignment:
1. In-phase outputs (0° between outputs) at all frequen-

cies (not just at the crossover frequency as popularly 
believed by some).

2. Constant voltage (the outputs sum to unity at all 
frequencies).
As discussed earlier Linkwitz-Riley in-phase outputs 

solve one troublesome aspect of crossover design. The 
acoustic lobe resulting from both loudspeakers repro-
ducing the same frequency (the crossover frequency) 
is always on-axis (not tilted up or down) and has no 
peaking. This is called zero lobing error. In order for 
this to be true, however, both drivers must be in cor-
rect time alignment, i.e., their acoustic centers must lie 
in the same plane (or electrically put into equivalent 
alignment by adding time delay to one loudspeaker). 
Failure to time align the loudspeakers defeats this zero 
lobing error aspect. (The lobe tilts toward the lagging 
loudspeaker.)

Examination of Figure 13 shows that the 2nd-order 
(inverted) and 4th-order Butterworth examples satisfy 
condition 1, but fail condition 2 since they exhibit a 3 
dB peak. So, if a way can be found to make the am-
plitudes at the crossover point -6 dB instead of -3 dB, 
then the vector lengths would equal 0.5 (-6 dB) instead 
of .707 (-3 dB) and sum to unity — and we would have a 
Linkwitz-Riley crossover.

Russ Riley suggested cascading (putting in series) 
two Butterworth filters to create the desired -6 dB 
crossover points (since each contributes -3 dB). Voila! 
Linkwitz-Riley alignments were born.

Taken to its most general extremes, cascading any 
order Butterworth filter produces 2x that order Link-
witz-Riley. Hence, cascading two 1st-order circuits pro-
duces a 2nd-order Linkwitz-Riley (LR-2); cascading two 

2nd-order Butterworth filters creates a LR-4 design; 
cascading two 3rd-order Butterworth filters gives a LR-
6, and so on. (Starting with LR-2, every other solution 
requires inverting one output. That is, LR-2 and LR-6 
need inverting, while LR-4 and LR-8 do not.)

LR-2, Transient Perfect 2nd-Order Crossover
As an example of this process, let’s examine a LR-2 de-
sign. Referring to Figure 8 all that is required is to add 
a buffer amplifier (to avoid interaction between cascad-
ed filter components) to each of these two outputs and 
then add another resistor/capacitor network identical 
to the first. We now have a 2nd-order Linkwitz-Riley 
crossover.

The new vector diagram looks like Figure 14a. Each 
vector is .5 long (from the fact that each 1st-order 
reduces by 0.707, and .707 x .707 = .5) with phase angles 
of ±90°. Since the phase difference equals 180°, we in-
vert one before adding and wind up with a unity vector 
90° out of phase with the original.

Figure 15 shows the amplitude response. The cross-
over point is located at -6 dB and the slopes are 12 dB/
octave (40 dB/decade). The summed response is per-
fectly flat. Figure 16 shows the phase response. At the 
crossover frequency we see the HF output (upper trace) 
has +90° phase shift, while the LF output (lower trace) 
has -90° phase shift, for a total phase difference of 180°. 
Invert one before summing and the result is identical 
to the LF output.

These results differ from the 1st-order case in that 
the summed results do not yield unity (a piece of wire), 
but instead create an all-pass network. (An all-pass 
network is characterized by having a flat amplitude 
response combined with a smoothly changing phase 
response.) This illustrates Garde’s [10] famous work.

a) 2nd-order LR-2
(12 dB/oct)

b) 4th-order LR-4
(24 dB/oct)

c) 8th-order LR-8
(48 dB/oct)

Figure 14. Linkwitz-Riley vector diagrams for 2nd- to 8th-order cases.
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Cascading two linear phase circuits results in linear 
phase, as shown by the constant group delay plots (all 
three identical) of Figure 17. And constant group delay 
gives the transient perfect LF step response shown in 
Figure 18.

LR-4 and LR-8 Alignments
Looking back to Figure 14b. we see the vector diagrams 
for 4th and 8th-order Linkwitz-Riley designs. The LR-4 
design shows the resultant vector is unity but 180° out 
of phase with the input at the crossover frequency.

Cascading two 4th-order Butterworth filters results 
in an 8th-order Linkwitz-Riley design. Figure 14c. 
shows the vector diagram for the LR-8 case. Here, we 
see the phase shift for each output undergoes 360° rota-

tion returning to where it began. The resultant vector 
is back in phase with the original input signal. So, not 
only are the outputs in phase with each other (for all 
frequencies), they are also in phase with the input (at 
the crossover frequency).

8th-Order Comparison
A LR-8 design exhibits slopes of 48 dB/octave, or 160 
dB/decade. Figure 19 shows this performance char-
acteristic compared with the LR-4, 4th-order case for 
reference. As expected, the LR-4 is 80 dB down one 
decade away from the corner frequency, while the LR-8 
is twice that, or 160 dB down. Of interest here, are the 
potential benefits of narrowing the crossover region by 
using a LR-8 alignment.

Figure 15. LR-2 amplitude response

Figure 16. LR-2 phase response

Figure 17. LR-2 group delay

Figure 18. LR-2 transient response
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Figure 21 magnifies the responses shown in Figure 
19 to reveal a clearer picture of the narrower crossover 
region, as well as showing the flat summed responses. 
(The slight difference in summed amplitudes at the 
crossover frequency is due to a slight gain difference 
between the two circuits.) The critical crossover region 
for the LR-8 case is one-half of what it is for the LR-4 
case. The exact definition of where the crossover region 
begins and ends is ambiguous, but, by whatever defini-
tion, the region has been halved.

As an example of this, a very conservative defini-
tion might be where the responses are 1 dB down from 
their respective passbands. We would then refer to the 
crossover region as extending from the -1 dB point on 
the low-pass response to the -1 dB point on the high-
pass response. For LR-8, these points are 769 Hz and 
1301 Hz respectively, yielding a crossover region only 
¾-octave wide. As a comparative reference, the LR-4 
case yields -1 dB points at 591 Hz and 1691 Hz, for a 
1.5-octave wide region.

For the LR-8 case, it is interesting to note that the 
-1 dB point on the low-pass curve corresponds almost 
exactly to the -20 dB point on the high-pass curve 
(the exact points occur at 760 Hz and 1316 Hz). So if 
you want to define the region as where the response is 
down 20 dB, you get the same answer. The entire re-
gion for the LR-8 case is ¾-octave wide, or it is one-half 
this number for each driver. That is, the loudspeaker 
driver (referred to as ‘driver’ from now on) has to be 
well behaved for only about 0.4-octave beyond the 
crossover point. This compares with the 4th-order case 
where the same driver must behave for 0.8-octave.

The above is quite conservative. If other reference 
points are used, say, the -3 dB points (895 Hz & 1117 
Hz), then the LR-8 crossover region is just ⅓-octave 
wide, and drivers only have to stay linear for 1/6-oc-
tave. (1/6-octave away from the crossover frequency the 
drive signal is attenuated by 12 dB, so the output driver 
is operating at about 1/16 power.)

The extremely steep slopes offer greater driver pro-
tection and linear operation. Beyond the driver’s linear 
limits all frequencies attenuate so quickly that most 
nonlinearities and interaction ceases being significant. 
Because of this, the driver need not be as well behaved 
outside the crossover frequency. It is not required to re-
produce frequencies it was not designed for. For similar 
reasons, power handling capability can be improved for 
HF drivers as well. And this narrower crossover region 
lessens the need for precise driver time alignment since 
the affected spectrum is so small.

The caveat, though, is an increased difficulty in 
designing good systems with sharp slopes. The loud-
speakers involved have differing transient responses, 
polar patterns and power responses. This means the 
system designer must know the driver characteristics 
thoroughly. Ironically, sometimes loudspeaker overlap 
helps the system blend better even when on-axis ampli-
tude response is flat.

LR-8 Phase Response
Figure 20 shows the respective phase response for LR-4 
(upper trace) and LR-8 (lower trace) designs. As pre-
dicted by the vector diagram in Figure 14b, the LR-4 
case has 180° (4 x 45°) of phase shift at the crossover 

Figure 19. LR-4 and LR-8 slopes Figure 20. LR-4 and LR-8 phase response
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frequency. Thus, the output signal is out-of-phase with 
the input signal at the crossover frequency for the LR-4 
case. Both outputs are in-phase with each other, but 
out-of-phase with the input.

The LR-8 design eliminates this out-of-phase con-
dition by bringing the outputs back in sync with the 
input signal at the crossover frequency. The lower trace 
shows the 360° phase shift for the LR-8 alignment.

LR-8 Transient Response
Butterworth functions do not have linear phase shift 
and consequently do not exhibit constant group delay. 
(First-order networks are not classified as Butterworth.) 
Since Linkwitz-Riley designs (higher than LR-2) are 
cascaded Butterworth, they also do not have constant 
group delay.

Group delay is just a measure of the non-linearity 
of phase shift. A direct function of non-linear phase 
behavior is overshoot and damping time for a step 
response. The transient behavior of all Linkwitz-Riley 
designs (greater than 2nd-order) is classic Butterworth 
in nature. That is, the filters exhibit slight overshoot 
when responding to a step response, and take time to 
damp down.

Figure 22 compares LR-8 and LR-4 designs and 
shows the greater overshoot and damping time for the 
8th-order case. The overshoot is 15% for the LR-4 case 
and twice that, or about 30%, for the LR-8 case. As 
expected, the LR-8 design takes about twice as long to 
damp down. The initial rise-time differences are due to 
the group delay value differences.

Is It Audible?
The conservative answer says it is not audible to the 
overwhelming majority of audio professionals. Under 
laboratory conditions, some people hear a difference on 
non-musical tones (clicks and square waves).

The practical answer says it is not audible to anyone 
for real sound systems reproducing real audio signals.

Linkwitz-Riley Power Response
Linkwitz-Riley alignments produce constant voltage 
response (voltage vectors sum to unity) at the crossover 
frequency, but they may produce constant power. At 
the crossover frequency, each voltage output is half of 
normal. This produces half the normal current into 
the loudspeakers. Since power is the product of volt-
age times current, the power is one-quarter of normal. 
Considering a simple two-way system, the combined 
total power at the crossover frequency will be half of 
normal (one-quarter from each driver), producing a dip 
of 3 dB at the crossover frequency in the overall power 
response, provided there is no additional phase shift 
contributed by the drivers themselves — such is never 
the case.

The power response of loudspeakers with noncoinci-
dent drivers is a complex problem. See the Vanderkooy 
and Lipshitz [11] study for complete details.

Figure 21. LR-4 and LR-8 slopes magnified Figure 22. LR-4 and LR-8 transient response
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